17 research outputs found

    The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Final Report

    Get PDF
    The Habitable Exoplanet Observatory, or HabEx, has been designed to be the Great Observatory of the 2030s. For the first time in human history, technologies have matured sufficiently to enable an affordable space-based telescope mission capable of discovering and characterizing Earthlike planets orbiting nearby bright sunlike stars in order to search for signs of habitability and biosignatures. Such a mission can also be equipped with instrumentation that will enable broad and exciting general astrophysics and planetary science not possible from current or planned facilities. HabEx is a space telescope with unique imaging and multi-object spectroscopic capabilities at wavelengths ranging from ultraviolet (UV) to near-IR. These capabilities allow for a broad suite of compelling science that cuts across the entire NASA astrophysics portfolio. HabEx has three primary science goals: (1) Seek out nearby worlds and explore their habitability; (2) Map out nearby planetary systems and understand the diversity of the worlds they contain; (3) Enable new explorations of astrophysical systems from our own solar system to external galaxies by extending our reach in the UV through near-IR. This Great Observatory science will be selected through a competed GO program, and will account for about 50% of the HabEx primary mission. The preferred HabEx architecture is a 4m, monolithic, off-axis telescope that is diffraction-limited at 0.4 microns and is in an L2 orbit. HabEx employs two starlight suppression systems: a coronagraph and a starshade, each with their own dedicated instrument

    The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Final Report

    Get PDF
    The Habitable Exoplanet Observatory, or HabEx, has been designed to be the Great Observatory of the 2030s. For the first time in human history, technologies have matured sufficiently to enable an affordable space-based telescope mission capable of discovering and characterizing Earthlike planets orbiting nearby bright sunlike stars in order to search for signs of habitability and biosignatures. Such a mission can also be equipped with instrumentation that will enable broad and exciting general astrophysics and planetary science not possible from current or planned facilities. HabEx is a space telescope with unique imaging and multi-object spectroscopic capabilities at wavelengths ranging from ultraviolet (UV) to near-IR. These capabilities allow for a broad suite of compelling science that cuts across the entire NASA astrophysics portfolio. HabEx has three primary science goals: (1) Seek out nearby worlds and explore their habitability; (2) Map out nearby planetary systems and understand the diversity of the worlds they contain; (3) Enable new explorations of astrophysical systems from our own solar system to external galaxies by extending our reach in the UV through near-IR. This Great Observatory science will be selected through a competed GO program, and will account for about 50% of the HabEx primary mission. The preferred HabEx architecture is a 4m, monolithic, off-axis telescope that is diffraction-limited at 0.4 microns and is in an L2 orbit. HabEx employs two starlight suppression systems: a coronagraph and a starshade, each with their own dedicated instrument.Comment: Full report: 498 pages. Executive Summary: 14 pages. More information about HabEx can be found here: https://www.jpl.nasa.gov/habex

    Recent New Ideas and Directions for Space-Based Nulling Interferometry

    No full text
    This document is composed of two viewgraph presentations. The first is entitled "Recent New Ideas and Directions for Space-Based Nulling Interferometry." It reviews our understanding of interferometry compared to a year or so ago: (1) Simpler options identified, (2) A degree of flexibility is possible, allowing switching (or degradation) between some options, (3) Not necessary to define every component to the exclusion of all other possibilities and (4) MIR fibers are becoming a reality. The second, entitled "The Fiber Nuller," reviews the idea of Combining beams in a fiber instead of at a beamsplitter

    Recent Progress in Vortex Coronagraphy

    No full text
    The Optical Vortex Coronagraph (OVC) is a phase-based coronagraph that can enable high-contrast imaging observations very near bright stars and can make use of smaller telescope diameters than most alternative techniques. This paper first briefly describes the basic principles of operation of the vortex coronagraph, which applies an azimuthal phase spiral to the focal plane point spread function, and then turns to recent advances, both in understanding and in the needed technology development. In particular, vortex phase masks based on circularly-symmetric half-wave plates made of both liquid-crystal polymers and photonic crystals have now achieved very good contrast. Moreover, a dual-stage vortex coronagraph configuration can be used to achieve high contrast in the case of an on-axis telescope, i.e., in the presence of obscuration due to a secondary mirror and a secondary support structure. Further development of the relevant vortex techniques could potentially enable a range of high-contrast coronagraphic space missions, from an initial explorer class mission to a large flagship class exoplanet imaging mission. Of particular interest in this regard is the use of one of the two former 2.4 m National Reconnaissance Office telescopes for coronagraphic observations

    Development of a Light-field Fluorescence Microscope for in situ Life Searches in the Solar System

    No full text
    With oceans and energy sources present on several outer solar system moons, it is natural ask whether life might also be present on such bodies. To search for microbial life, 3-d imaging microscopes are needed that can efficiently search through sizeable liquid volumes for particles with signs of cellular structure and morphology, as well as to examine motilities. Our 3-d digital holographic microscopy approaches have been described earlier; that technique can provide sample amplitude and phase information across a volume. On the other hand, fluorescence imaging can provide complementary chemical information, and fluorescence light-field microscopy (FLFM) is an emerging approach to 3-d fluorescence imaging. Here we describe a 3-d FLFM imager concept, with the ultimate goal of combining both microscope types into a multi-mode microscope for lander instrument packages.Light-field imaging is a technique that can be used to refocus to different depths without mechanical refocusing. This technique generally results in lower resolution than standard imaging, but compensates with the ability to refocus to planes well beyond the normal depth of field. However, when imaging sparse, point-like fluorescent signals, or when simultaneous higher-resolution 3-d images of the entire field are available with a complementary 3-d microscope, such as, e.g., a digital holographic microscope, the finest spatial resolution may not be necessary for the light-field fluorescence microscope.In this paper, we first consider the parameters describing a light-field microscope, in order to be able to optimize them to our application. Refocusing to different sample planes is then modeled with a simple ray-trace algorithm. Our goal is to reach a suitable compromise between spatial resolution, field of view, and depth of field within a coincident volume of view for the fluorescence microscope and the digital holographic microscope. Even without the use of super-resolution techniques, lateral and axial resolutions on the order of several microns are possible, across a field of view on the order of a millimeter and a depth of field of a few tenths of a millimeter, both of which are comparable to the values obtained with our digital holographic microscopes. Finally, we describe a prototype fluorescent light-field microscope benchtop setup with which we have carried out initial laboratory demonstrations

    Development of a Light-Field Fluorescence Microscope for in Situ Life Searches in the Solar System

    No full text
    With oceans and energy sources present on several outer solar system moons, it is natural ask whether life might also be present on such bodies. To search for microbial life, 3-d imaging microscopes are needed that can efficiently search through sizeable liquid volumes for particles with signs of cellular structure and morphology, as well as to examine motilities. Our 3-d digital holographic microscopy approaches have been described earlier; that technique can provide sample amplitude and phase information across a volume. On the other hand, fluorescence imaging can provide complementary chemical information, and fluorescence light-field microscopy (FLFM) is an emerging approach to 3-d fluorescence imaging. Here we describe a 3-d FLFM imager concept, with the ultimate goal of combining both microscope types into a multi-mode microscope for lander instrument packages. Light-field imaging is a technique that can be used to refocus to different depths without mechanical refocusing. This technique generally results in lower resolution than standard imaging, but compensates with the ability to refocus to planes well beyond the normal depth of field. However, when imaging sparse, point-like fluorescent signals, or when simultaneous higher-resolution 3-d images of the entire field are available with a complementary 3-d microscope, such as, e.g., a digital holographic microscope, the finest spatial resolution may not be necessary for the light-field fluorescence microscope. In this paper, we first consider the parameters describing a light-field microscope, in order to be able to optimize them to our application. Refocusing to different sample planes is then modeled with a simple ray-trace algorithm. Our goal is to reach a suitable compromise between spatial resolution, field of view, and depth of field within a coincident volume of view for the fluorescence microscope and the digital holographic microscope. Even without the use of super-resolution techniques, lateral and axial resolutions on the order of several microns are possible, across a field of view on the order of a millimeter and a depth of field of a few tenths of a millimeter, both of which are comparable to the values obtained with our digital holographic microscopes. Finally, we describe a prototype fluorescent light-field microscope benchtop setup with which we have carried out initial laboratory demonstrations

    Nulling at the Keck Interferometer

    Get PDF
    The nulling mode of the Keck Interferometer is being commissioned at the Mauna Kea summit. The nuller combines the two Keck telescope apertures in a split-pupil mode to both cancel the on-axis starlight and to coherently detect the residual signal. The nuller, working at 10 um, is tightly integrated with the other interferometer subsystems including the fringe and angle trackers, the delay lines and laser metrology, and the real-time control system. Since first 10 um light in August 2004, the system integration is proceeding with increasing functionality and performance, leading to demonstration of a 100:1 on-sky null in 2005. That level of performance has now been extended to observations with longer coherent integration times. An overview of the overall system is presented, with emphasis on the observing sequence, phasing system, and differences with respect to the V2 system, along with a presentation of some recent engineering data

    Phase-Shifting Zernike Interferometer Wavefront Sensor

    No full text
    The canonical Zernike phase-contrast technique1,2,3,4 transforms a phase object in one plane into an intensity object in the conjugate plane. This is done by applying a static pi/2 phase shift to the central core (approx. lambda/D) of the PSF which is intermediate between the input and output planes. Here we present a new architecture for this sensor. First, the optical system is simple and all reflective. Second, the phase shift in the central core of the PSF is dynamic and or arbitrary size. This common-path, all-reflective design makes it minimally sensitive to vibration, polarization and wavelength. We review the theory of operation, describe the optical system, summarize numerical simulations and sensitivities and review results from a laboratory demonstration of this novel instrumen
    corecore